Home | Products | Oligo Technology | Fluorescent Probes | Modifications | Oligo Design Tools | Online Order

Oligo Modifications List | Oligo Modifications Reference Category
Modification : Thio 6-dG (s6dG)
Reference Catalog Number 26-6533
Category Structural Studies
Modification Code S6-dG
5 Prime Y
3 Prime Y
Internal Y
Molecular Weight (mw) 345.26
Extinction Coeficient (ec) 11.5
Technical Info (pdf) PS26-6533.pdf
Catalog NoScalePrice
26-6533-0550 nmol$410.00
26-6533-02200 nmol$410.00
26-6533-011 umol$533.40
26-6533-032 umol$789.50
26-6533-1010 umol$4,267.20
26-6533-1515 umol$5,334.00

Discounts are available for Thio 6-dG (s6dG)!
Modification* Discount Price Structure
1 site/order List price
2 sites/order 10% discount
3 sites/order 20% discount
4 sites/order 30% discount
5-9 sites/order 50% discount
10+ sites/order 60% discount
*Exceptions apply

Related Modifications
Thiol C6 dT
5-Me iso dC
propyne dU
Thiol SS Dipod (DTSPA)
Thio-4-dT (S4dT)
Thiol SS-C6
Thiol SS-C3
propyne dC
Thio-4 dU (s4dU)
Thiol SS Dipod (DTPA)
Thio-2-dT (S2dT)
Thio-2-rU (s2U)
Thio-4-rU (s4U)

6-Thio-deoxyGuanosine (6-Thio-dG) is a nucleoside that, when incorporated into either DNA or RNA in the cell, exhibits potent cytotoxicity. Such cytotoxicity is most likely due to the 6-Thio-dG either inducing strand breakage or cross-linking to both DNA and proteins (1). The cytotoxic properties of 6-Thio-dG make it an effective cytotoxic agent for treating human leukemias. Its ability to photochemically cross-link to both nucleic acids and proteins also make 6-Thio-dG-modified oligonucleotides desirable reagents for use in studying binding interactions between DNA and DNA-binding proteins. In one study, 6-Thio-dG was shown to efficiently cross-link with EcoRV endonuclease and methyltransferase (2). Cross-linking was achieved with 340 nm UV light; because this wavelength is considerably removed from the UV absorbance maxima of the natural bases (260 nm), cross-linking can be achieved without additional UV damage to the DNA.

6-Thio-dG can also be used to study the properties of G-rich triple-helix forming oligonucleotides. For example, substitution of 6-Thio-dG for some or all dGs in such oligos results in inhibition of both oligo self-association and G-quartet formation, thereby favoring normal formation of triple helices (3).

In addition, because the thiol group of 6-Thio-dG is active, incorporation of this modified nucleoside into an oligo also incorporates a reactive thiol at that position, which can be utilized to selectively alkylate the sulfur at that position (4).

1. Christopherson, M.S., Broom, A.D. Synthesis of oligonucleotides containing 2’-deoxy-6-thioguanosine at a predetermined site. Nucleic Acids Res. (1991), 19: 5719-5724.
2. Nikiforov, T.T., Connolly, B.A. Oligodeoxynucleotides containing 4-thiothymidine and 6-thiodeoxyguanosine as affinity labels for the Eco RV restriction endonuclease and modification methylase. Nucleic Acids Res. (1992), 20: 1209-1214.
3. Rao, T.S., Durland, R.H., Seth, D.M., Myrick, M.A., Bodepudi, V., Revankar, G.R. Incorporation of 2’-Deoxy-6-thioguanosine into G-Rich Oligodeoxyribonucleotides Inhibits G-Tetrad Formation and Facilitates Triplex Formation.Biochemistry (1995), 34: 765-772.
4. Coleman, R.S., Pires, R.M. Covalent cross-linking of duplex DNA using 4-thio-2’-deoxyuridine as a readily modifiable platform for introduction of reactive functionality into oligonucleotides. Nucleic Acids Res. (1997), 25: 4771-4777.


Enter the letters you see above for verification:
Order Status | Customer Service | Site Map | Request Literature | About e-oligos | Contact Us |   Search
January 17, 2021 e-oligos(tm) is a brand of Gene Link. e-oligos(tm) and the binary helix(tm) All graphic art is a trade mark of Gene Link, Inc. Copyright 2021
    Terms and Conditions    Licenses    Privacy Policy