Home | Products | Oligo Technology | Fluorescent Probes | Modifications | Oligo Design Tools | Online Order

Oligo Modifications List | Oligo Modifications Reference Category
Modification : 2'-O methyl U
Reference Catalog Number 27-6410U
Category Nuclease Resistance
Modification Code mU
5 Prime Y
3 Prime Y
Internal Y
Molecular Weight (mw) 320.2
Extinction Coeficient (ec) 9.9
Technical Info (pdf) PS27-6410.pdf
Catalog NoScalePrice
27-6410U-0550 nmol$6.00
27-6410U-02200 nmol$8.00
27-6410U-011 umol$16.00
27-6410U-032 umol$28.00
27-6410U-1010 umol$102.00
27-6410U-1515 umol$148.00

Discounts are available for 2'-O methyl U!
Modification* Discount Price Structure
1 site/order List price
2 sites/order 10% discount
3 sites/order 20% discount
4 sites/order 30% discount
5-9 sites/order 50% discount
10+ sites/order 60% discount
*Exceptions apply

Related Modifications
2'-O methyl G
2'-O methyl U
2'-O Me-5-Me-C
2'-O methyl C
2'-MOE- Bases
2'-O methyl bases
2'-O methyl A
2'-O methyl Inosine
2'-F Bases

2'-O-Methyl bases are classified as a 2'-O-Methyl RNA monomer. 2'-O-Methyl nucleotides are most commonly used to confer nuclease resistance to an oligo designed for anti-sense, siRNA or aptamer-based research, diagnostic or therapeutic purposes, when specific 2'-OH is not required. Nuclease resistance can be further enhanced by phosphorothiolation of appropriate internucleotide linkages within the oligo.

The hydrogen bonding behavior of a 2'-O-Methyl RNA/RNA base pair is closer to that of an RNA/RNA base pair than a DNA/RNA base pair. Consequently, the presence of 2'-O-Methyl nucleotides improves duplex stability. Indeed, incorporation of a 2'-O-Methyl nucleotide into an anti-sense oligo (resulting in a 2'-O-Methyl RNA/DNA chimeric), lead to a increase in the Tm of its duplex with RNA, relative to that formed by an unmodified anti-sense DNA oligo, of 1.3oC per 2'-O-Methyl RNA residue added (2). Moreover, from a synthesis standpoint, the coupling efficiency of 2'-O-Methyl phosphoramidites are higher than those of RNA monomers, resulting in higher yield of full-length oligos.

ASO's and siRNA Modifications.

Click this link to view ASO's and siRNA Modifications.

ASO's and siRNA Delivery.

The development of effective delivery systems for antisense oligonucleotides is essential for their clinical therapeutic application. The most common delivery system involves a relatively hydrophobic molecule that can cross the lipid membrane. Cholesterol TEG, alpha-Tocopherol TEG ( a natural isomer of vitamin E), stearyl and GalNAc modifications have been shown to effective for delivery of ASO's and siRNA in addition to cell penetrating peptides.

Click this link to view these modifications.

1. Cotton, M.; Oberhauser, B.; Burnar, H. et al. 2'O methyl and 2'O ethyl oligoribonucleotides as inhibitors of the in vitro U7 snRNP-dependent messenger-RNA processing event. Nucleic Acids Res. (1991) , 19:2629-2635.
2. Kawasaki, A.M. et al., Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease resistant antisense compounds with high affinity and specificity for RNA targets, Journal of Medicinal Chemistry (1993), 36: 831-841.

Enter the letters you see above for verification:
Order Status | Customer Service | Site Map | Request Literature | About e-oligos | Contact Us |   Search
January 17, 2021 e-oligos(tm) is a brand of Gene Link. e-oligos(tm) and the binary helix(tm) All graphic art is a trade mark of Gene Link, Inc. Copyright 2021
    Terms and Conditions    Licenses    Privacy Policy